Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@gmail.com для удаления материала

<< Назад к книге

Книга "Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер", стр. 71


В транс-конформации два атома водорода присоединены к девятому и десятому атомам углерода с противоположных сторон молекулы. Один указывает почти прямо вверх, а другой — почти прямо вниз. Две цепочки углеродных атомов, отходящие от девятого и десятого атомов углерода, идут в противоположных направлениях относительно двойной связи. В итоге цис-молекула «изогнута» в месте двойной связи, тогда как транс-молекула остаётся в этом месте практически «прямой».

В нормальных условиях поворот вокруг углерод-углеродной двойной связи невозможен. Эта невозможность поворота имеет колоссальное значение. На рис. 14.13 изображены гош- и транс-конформации н-бутана, который содержит только одиночные связи. Поворот вокруг одиночной связи легко происходит при комнатной температуре. Поэтому в случае н-бутана гош- и транс-конформациии не зафиксированы. На самом деле, будучи растворены в жидкости при комнатной температуре гош- и транс-конформации н-бутана переходят друг в друга за счёт поворотов вокруг одиночной средней углерод-углеродной связи примерно за 50 пс (50 триллионных долей секунды), то есть за очень короткое время. Напротив, цис- и транс-конформации олеиновой кислоты, изображённые на рис. 16.4, зафиксированы. Они не переходят друг в друга без очень высокой температуры и катализатора.

Чтобы понять, почему поворот вокруг одиночной углерод-углеродной связи происходит легко, а вокруг двойной связи невозможен, надо рассмотреть гибридные орбитали, используемые углеродом для создания одиночной и двойной углерод-углеродной связей. На рис 14.9 изображены гибридные орбитали, служащие в этане для образования одиночной углерод-углеродной связи. Каждый атом углерода связан с другими атомами одной из четырёх гибридных sp3-орбиталей. В средней части рис. 14.9 схематически показано образование углерод-углеродной связи за счёт перекрытия sp3-орбитали одного атома углерода с такой же орбиталью другого. Поворот одного из атомов не влияет на перекрытие орбиталей. Предпочтительная конфигурация образуется благодаря тому, что атомы водорода, присоединённые к двум атомам углерода, стремятся по возможности избегать друг друга, но молекула легко может повернуться и перейти из одной предпочтительной конфигурации в другую без изменения характера перекрытия углерод-углеродной sp3-орбитали. Это резко отличается от ситуации в этилене, где углерод-углеродная связь двойная.

На рис. 14.15 изображены орбитали, служащие для образования двойной связи в этилене. Каждый атом углерода использует три гибридные sp2-орбитали для образования σ-связей с атомами водорода и другим атомом углерода, как показано в верхней части рис. 14.15. Эти три sp2-орбитали у каждого атома углерода образованы суперпозицией 2s-, 2px- и 2py-орбиталей. Данные орбитали и σ-связи расположены в плоскости страницы, которая принимается за плоскость xy. При этом у каждого атома углерода остаётся одна 2pz-орбиталь, которая направлена перпендикулярно плоскости страницы. Как показано в нижней части рис. 14.15, две 2pz-орбитали перекрываются боками и образуют π-связь. Если бы удалось захватить один из атомов углерода и начать поворачивать его, то 2pz-орбиталь отклонилась бы от оси z в направлении плоскости xy. Такой поворот уменьшил бы перекрытие двух 2pz-орбиталей, разрушая π-связь. Как показано в таблице, которая приводится вслед за обсуждением рис. 13.9, двойная связь намного сильнее одиночной. Поэтому потребовалась бы очень большая энергия, чтобы выполнить поворот вокруг двойной углерод-углеродной связи, поскольку для этого необходимо разрушить π-связь. Именно этот огромный потенциальный энергетический штраф препятствует повороту.

Природа производит цис-жиры, а химическая обработка — транс-жиры

Ненасыщенные жиры — как мононенасыщенные, так и полиненасыщенные — образуются в природе почти исключительно в цис-конформациях. Небольшое количество транс-жиров обнаружено в мясе и молоке коров, овец, коз и других жвачных животных. Однако огромное количество транс-жиров присутствует в частично гидрогенизированном масле, и, кроме того, транс-жиры обнаружены в гидрогенизированном масле, поскольку химическая обработка не позволяет добиться стопроцентного насыщения жирных кислот. Необработанные мононенасыщенные и полиненасыщенные растительные жиры содержат только цис-конформации в местах двойных связей. Частичная гидрогенизация масла натурального происхождения порождает большое количество транс-жиров. Переход из цис-конформации в транс-конформацию случается во время процесса гидрогенизации.

Как уже отмечалось, соединённые двойными связями атомы углерода, находясь в реакторе при высокой температуре, связываются с металлическим катализатором. Пока сохраняется связь с катализатором, углерод-углеродная связь фактически является одиночной, и могут происходить повороты, переводящие цис-конформацию в транс-конформацию. Атом катализатора может отсоединиться от молекулы жира прежде, чем произойдёт гидрогенизация, и в таком случае двойная связь не гидрогенизируется, но она может поменять конформацию. Если переход из цис-конформации в транс-конформацию случится до того, как молекула освободит катализатор, то результатом будет переход цис-конформации в транс-конформацию без гидрогенизации двойной связи. Обработка, предназначенная для уменьшения числа двойных связей, не устраняет их все. Однако существенное число двойных связей переходит из цис-конформации в транс-конформацию. В результате частично гидрогенизированное масло может содержать значительное количество двойных связей в транс-конформации.

Транс-жиры могут быть опасны

Было продемонстрировано, что транс-жиры оказывают ряд опасных воздействий на здоровье человека. Основная причина вредного влияния транс-жиров связана с тем фактом, что биологические системы приспособлены иметь дело с цис-жирами — форма тут имеет значение. Энзимы — это белки (крупные биологические молекулы), работающие как очень узкоспециализированные химические фабрики. Они могут преобразовывать жиры в другие полезные молекулы, а также расщеплять жиры, чтобы от них избавиться. Однако энзим, который работает с цис-жиром, в общем случае не осуществляет тех же химических реакций с транс-жиром (а может и вовсе не осуществлять никаких реакций), несмотря на идентичность химической формулы. Поэтому две молекулы жирных кислот, содержащие одинаковое число атомов углерода, водорода и кислорода, соединённых между собой в одинаковом порядке, будут на биохимическом уровне обрабатываться очень по-разному в зависимости от того, находятся они в цис- или транс-конформации. Наш организм не приспособлен иметь дело с большим количеством транс-жиров.

Транс-жиры тесно связаны с развитием сердечно-сосудистых заболеваний, поскольку они влияют на уровень холестерина в крови. Транс-жиры также могут оказывать пагубное воздействие на нервную систему. Миелин — это вещество, образующее защитную оболочку нейронов. Миелин примерно на 30 % состоит из белков и на 70 % — из жирных кислот, две основные из которых — это олеиновая кислота (см. рис. 16.2 и 16.4) и докозагексаеновая кислота (ДГК, см. ниже). Транс-изомеры жирных кислот заменяют ДГК в мембранах клеток мозга и в миелине. Они влияют на электрические сигналы, которые передают сообщения в нервной системе, воздействуя на коммуникации между нейронами. Это удивительно, но изменение формы молекулы без изменения химического состава может превратить полезную пищу во вредную.

Читать книгу "Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер" - Майкл Файер бесплатно


0
0
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.


Knigi-Online.org » Домашняя » Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер
Внимание