Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@gmail.com для удаления материала

<< Назад к книге

Книга "Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул - Кейт Бибердорф", стр. 15


молекулы находятся близко друг к другу, жидкость может превратиться в твердое тело. Замерзание и плавление (то есть таяние) – это противоположные процессы. При плавлении молекулам необходимо двигаться и увеличивать расстояние между собой; в результате твердое тело превращается в жидкость. Однако для того, чтобы жидкость стала твердым телом, молекулы должны располагаться практически вплотную к друг другу.

Лучший способ заморозить что-либо – это поместить объект в среду с низкой температурой, например, в морозильную камеру. Вы также можете изменить давление (в лаборатории). При низкой температуре движение молекул замедляется, из-за чего расстояние между ними уменьшается. Когда я убираю брецели в шоколаде в холодильник, растопленный шоколад затвердевает и превращается в глазурь. Этот процесс начинает происходить не сразу, к тому же тут играет роль толщина слоя шоколада. Чем больше молекул, тем больше времени требуется для их замедления – для перехода жидкости в твердое состояние. Однако все молекулы обладают точкой замерзания – температурой, при которой жидкость превращается в твердое тело.

Таяние, испарение, конденсация и заморозка – самые распространенные переходы. Есть еще два, не столь распространенных, но их нужно упомянуть: сублимация и десублимация. Это процессы перехода твердого тела в газообразное и наоборот. Молекулы, минуя жидкое состояние, сразу переходят из твердого в газообразное или наоборот. Чтобы произошли эти процессы, расстояние между молекулами должно резко увеличиться или резко уменьшиться. В зависимости от молекул подобные переходы могут происходить естественным путем в обычных условиях или в лаборатории с использованием экстремальных температур и изменением давления.

В естественных условиях сублимация происходит редко, так как для такого перехода молекулам надо очень быстро двигаться. По правде говоря, в повседневной жизни мы практически не сталкиваемся с этим процессом. Большинство людей наблюдают его только в том случае, если работают с сухим льдом. Сухой лед (или углекислый газ в твердом состоянии) обладает удивительными свойствами, благодаря которым может переходить из твердого состояния в газообразное. Это означает, что во время перехода расстояние между молекулами быстро увеличивается. Процесс происходит самостоятельно при нормальных атмосферном давлении и температуре; именно поэтому сухой лед используется для создания тумана или дыма на концертах, представлениях, а также на моих лекциях.

Сублимация также используется в освежителях воздуха и камфорных шариках. Сами по себе эти вещества твердые, но со временем они выделяют в воздух немного молекул, из-за чего появляется определенный запах. Каждая система сублимируется при комнатной температуре, однако, в отличие от сухого льда, этот процесс может занять дни, а то и недели. Вот почему автомобильные ароматизаторы необходимо менять раз в несколько недель – они перестают выделять в воздух молекулы.

Противоположный сублимации процесс – десублимация: газ превращается в твердое тело. Во время этого перехода теряется много энергии, из-за чего молекулы замедляются и останавливаются. Люди, живущие в холодном климате, сталкиваются с десублимацией намного чаще, чем им кажется. Каждое утро, когда вы выглядываете в окно и видите покрытые инеем листья, вы наблюдаете результат десублимации. Ночью молекулы воды в воздухе теряют много энергии, из-за чего оседают на листьях, образуя ледяную корочку. Если вы когда-нибудь решите понаблюдать за тем, как образуется иней, то увидите, что пар сразу превращается в лед, минуя жидкую форму.

Еще один пример десублимации – сажа внутри дымохода. Когда я жила в Мичигане, то любила проводить холодное утро, сидя у камина с кружкой горячего какао. В то время я не понимала, что если буду чуть внимательнее, то смогу увидеть, как частички сажи, переходя из газообразной формы в твердую, объединяются с пылью. Пыль и сажа копились внутри камина, оставляя после себя черный налет, который моя мама просто ненавидела. В этом случае десублимация сажи происходила намного быстрее, чем десублимация инея; по моему предвзятому мнению, оба процесса одинаково завораживают.

Напомню, что существует шесть видов фазовых переходов, которые я собрала в одной таблице.

Большинство молекул имеют собственную температуру и давление для каждого из шести переходов, однако каждая молекула уникальна. У некоторых, например, есть тройная точка. Это сочетание температуры и давления, при котором расстояние между молекулами неопределенно, из-за чего вещество одновременно существует в трех агрегатных формах: твердой, жидкой и газообразной. Например, для воды тройной точкой является температура 0,01°C (32°F) и давление 4,58 торр. Самый простой способ наблюдать такое явление в лаборатории – это набрать воду в закрытый контейнер и поместить в вакуум, чтобы снизить давление.

Я уверена, что вы видели в интернете, как люди на Аляске выливают кипящую воду при температуре –52°C. Как только вода покидает емкость, происходит фазовый переход: часть молекул моментально замерзает, превращаясь в маленькие сосульки, а часть молекул испаряется в большое белое облако. Очень похоже на заледеневший фейерверк: большое облако газа с маленькими сосульками в форме радуги. Вода находится во всех трех состояниях одновременно около одной секунды. Вот так классно она выглядит в своей тройной точке.

Есть еще несколько условий (определенные температура и давление), при которых можно отличить жидкости и газы. Когда вы поднимаетесь выше критической точки, то расстояние между молекулами в жидкостях и газах изменяется так быстро, что невозможно определить агрегатное состояние вещества. Это называется сверхкритическая жидкость; она представляет собой жидкостногазовое вещество и обладает как свойствами жидкостей, так и свойствами газов (для разных типов молекул – разные свойства).

Самый распространенный пример сверхкритической жидкости – безкофеиновый кофе. Сначала зерна обрабатываются паром, после чего их помещают в специальный контейнер, способный выдерживать высокое давление. В него поступает диоксид углерода в сверхкритическом (или сжиженном) состоянии, растворяющий кофеин. Сверхкритическая жидкость не влияет на зерна кофе, благодаря чему считается идеальным растворителем кофеина. Самое интересное то, что диоксид углерода можно очистить от кофеина. А это значит, что его можно будет использовать еще несколько раз!

Раньше диоксид углерода в сжиженном состоянии часто использовался в качестве растворителя на химчистках, так как он легко удалял грязь с одежды, оставляя ту практически «сухой». (Я использую кавычки, потому что сверхкритическая жидкость – это не вполне та жидкость, к которой мы привыкли. Жидкое/газовое вещество не влажное, но и не сухое.) Однако была одна большая проблема. Вещество распылялось на одежду под большим давлением, но когда давление спадало, то хрупкие или плохо пришитые пуговицы ломались и отрывались. Улучшить этот процесс никак не получилось, поэтому, на сегодняшний день, в большинстве химчисток отказались от такого метода в пользу других вариантов.

Но все эти фазовые изменения происходят на макроскопическом уровне. Мы можем увидеть конденсацию, замерзание или даже сверхкритическую жидкость невооруженным глазом. Однако мы не

Читать книгу "Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул - Кейт Бибердорф" - Кейт Бибердорф бесплатно


0
0
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.


Knigi-Online.org » Разная литература » Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул - Кейт Бибердорф
Внимание